
Indexed MegaBLAST

1 SUPPLEMENTARY INFORMATION
In this section, we derive the upper bound on the size of the data
structures used to organize the database index and describe the
“seed search algorithm” used to find initial identical substrings in
the query and the database. The seed search algorithm has been
incorporated into a modified version of NCBI’s MegaBLAST, as
described below, with few changes to the algorithmic code parts
that do subsequent processing of the seeds.

1.1 Index Size Upper Bound
In this subsection, the size of an index volume in bytes is estimated
as a function of the size of the sequence database, k, and s. The size
estimate is useful to understand when our implementation of data-
base indexing is practical. Let V be the number of input sequences
contributing to the volume, and n be the total number of bases in the
input sequences. In this subsection, we use word to refer to a 4-byte
unsigned integer value.

An index volume stores the length of each input sequence, which
takes one word per sequence, contributing 4V bytes to the size. The
mapping of logical sequence ids to constituent input sequence ids
takes 4 words per logical sequence, contributing 4n/2B−1 bytes.
The denominator comes from the fact that concatenation of real
sequences into logical sequences ensures that pairs of consecutive
logical sequences, except possibly the last, have length at least
2B + 1.

The sequence data are stored in the sequence store using 2 bits
per base encoding. At most 3 bases worth of padding is added after
each sequence to align them to a byte boundary. Consequently, the
space taken by the sequence store can be bounded by bn/4c + 3

4V
bytes.

The lookup table contains 4k words and is terminated by a 0-
valued word. Each offset list is terminated by a 0-valued word. So
in the worst case, where every k-mer has a non-empty offset list,
the lookup table together with 0-value terminating words occupy
4 + (2× 4k+1) bytes.

The size of the space occupied by the offset lists depends on the
number and lengths of the seed-eligible intervals. LetM be the total
number of valid intervals and mi, 1 ≤ i ≤ M be the length of the
i-th seed-eligible interval. Let m =

∑M
i=1mi be the combined

length of all valid intervals. i-th seed-eligible interval has at most
b(mi − (k − 1))/sc entries in the offset lists, and at most 2 of
them are special offsets. Hence, it contributes at most b(mi − (k −
1))/sc+ 2 words to the total index size. The total size of the offset
lists is then estimated from above by

M∑

i=1

bmi/s+ (2− (k − 1)/s)c (1)

We consider two cases.
If k ≥ 2s + 1, then 2 − (k − 1)/s < 0 and expression (1) does

not exceed bm/sc ≤ n/s.
If k < 2s + 1 or, equivalently, s > (k − 1)/2, then expression

(1) does not exceed

M∑

i=1

(
2 +

mi − (k − 1)

(k − 1)/2

)
=

M∑

i=1

mi

(k − 1)/2

=
m

(k − 1)/2
≤ n

(k − 1)/2

Combining the two cases we get that the total size occupied by
the offset lists is at most

n

min
(
s, k−1

2

)

words.
For real biological sequence databases, one can assume that

the number of input sequences V and the total number of logical
sequences are both much smaller than n. Under this assumption,
the total size of the index can be estimated as approximately

2 × 4k+1 +
n

4
+

4n

min
(
s, k−1

2

) (2)

bytes. For example for an unmasked database of size 1 Gb and our
default values k = 12, s = 5, the expected size of the index would
be approximately 1.175 Gb.

1.2 Search Procedure
The seed search algorithm identifies longest exact matches (seeds)
between the query and the database that are at least wsize ≥ w bases
long, where wsize is the parameter of the procedure and repres-
ents the minimum target seed length. Both a database and a query
may contain ambiguous or masked bases. The seeds are required
to contain neither masked nor ambiguous parts of the query or the
database.

If (s, q) is a pair of matched base pair positions in the database
and the query respectively, then their diagonal diag(s, q) is defined
as s− q.

At any point during its execution, the procedure maintains a set of
seed candidates, which is implemented as an array indexed by logi-
cal sequence ids. Each element of the array is a linked list containing
seed candidates for the corresponding logical sequence. Seed candi-
dates within each list are kept in increasing order by their diagonal.
The algorithm described below ensures that each list has at most one
candidate per diagonal so there are no ties.

The procedure works by scanning the query from left to right
identifying the k-mers in the query free from ambiguous or masked
bases. For each such k-mer a corresponding offset list is pulled from
the offset data section of the index. Offsets from the offset list are
used to update the current seed candidate lists. During this process
any seed candidates that cannot be extended further are identified
and removed from the set of seed candidates. The ones that reached
the target seed length of wsize are saved in the final result set.

The final result set has a similar structure to the set of seed candi-
dates except that the results are grouped by input sequence ids rather
than logical sequence ids.

The following subsections provide a simplified version of the
search procedure. The production implementation contains some
optimizations aimed at improving cache performance of the code
and briefly described in subsection 1.2.3.

1.2.1 Outer Loop The following pseudocode shows the structure
of the outer loop of the search procedure.

The search is performed by procedure FIND SEEDS which takes
a query, an index, and a target seed length as parameters. For every
consecutive query position the corresponding offset list is retrieved
from the offset data section of the index. Then each element of the

1



Morgulis et al.

offset list is processed by procedure UPDATE SEED CANDIDATES

which is described in the following section.
It is not guaranteed that the set of list candidates is empty after

the whole query is processed. For this reason there is an additional
loop in the end of FIND SEEDS procedure that iterates over all seed
candidate lists, checks each remaining seed candidate for length,
and appends it to the corresponding result set.

We do not show pseudocode for the following utility functions
but describe them with text: GET KMER, GET OFFSET LIST, and
SCL CLEAR.

Function GET KMER returns the k-mer value ending at a certain
position in the sequence that can be used as key to the lookup table.
Function GET OFFSET LIST returns an offset list corresponding to
the given k-mer. Procedure SCL CLEAR takes a seed candidate list
as a parameter and removes all its elements.

Function DECODE OFFSET takes an encoded position value from
an offset list and breaks it down into the logical sequence id and
the actual offset. For special positions it also returns the pair
(l extent, r extent) and the flag indicating that the returned value
represents a special offset. l extent (r extent) is the distance from
the left (right) end of the k-mer that ends in the given sequence posi-
tion to the left (right) end of the corresponding seed-eligible interval
incremented by 1, or 0 if that distance is greater than s− 1.

Note. In the pseudocode below all functions and procedures take
parameters by reference, kmer size = k, special stride = s2, and
off bits = B.

Algorithm S1. Outer loop of the seed search procedure.
function DECODE OFFSET(list, list item)

l extent← r extend← 0
if list item < special stride2 then // special offset

special← true
l extent← list item÷special stride
r extent← list item mod special stride
// get the second entry for special offsets
list item← LIST NEXT(list, list item)

else
special← false

end if
divisor← 2off bits

lid = list item÷divisor
off = list item mod divisor
return (special, lid, off, l extent, r extent)

end function
procedure FIND SEEDS(query, index, wsize)

ql← SEQUENCE LENGTH(query)
for qoff ← kmer size − 1 to ql− 1 do

kmer← GET KMER(query, kmer size, qoff)
ol← GET OFFSET LIST(index, kmer)
for item in ol do

(special, lid, soff, l extent, r extent)
← DECODE OFFSET(index, ol, item)
UPDATE SEED CANDIDATES(index, query, wsize,

lid, soff, qoff, l extent, r extent)
end for

end for
for each lid do // process the remaining seed candidates

scl← INDEX GET SEED CADIDATES(index, lid)
for each (soff, qoff, len) in scl do

CHECK AND SAVE SEED(index, lid, wsize, soff ,
qoff, len)

end for
SCL CLEAR(scl)

end for
end procedure

1.2.2 Inner Loop The inner loop of the search procedure is
implemented in the function UPDATE SEED CANDIDATES. The
function operates on the seed candidate list for the given logical
sequence. The parameters to the function include the index, the
query, and the information about the new k-mer match position
including its logical sequence id, subject and query offsets soff and
qoff, and the information l extent and r extent about its distance
from the boundaries of the corresponding seed-eligible interval.

Each seed candidate contains the positions of the last bases of the
seed in the subject and query sequences and the seed length. Each
seed candidate is also extended as far as possible to the left and to
the right possibly crossing the seed-eligible interval boundary. The
algorithm however ensures that when a seed is saved, it is contained
within a seed-eligible interval. For each diagonal value, there can be
at most one seed candidate in the list on that diagonal at any given
time.

For the purposes of pseudocode below, seed candidate lists are
opaque objects that internally maintain a set of seed candidates, refe-
rence to the current position, and the position qoff of the last base of
the current query k-mer. Seed candidates are ordered by increasing
diagonal and are operated upon via the following functions.

SCL GET CURRENT takes a list and a query position as parame-
ters. If the query position is different from the qoff maintained by
the list, then the internal current position in the list is reset to the
beginning of the list. It returns the seed candidate at the current
position.

SCL SET CURRENT updates the contents of the current element
in the given list of seed candidates.

SCL END returns a boolean value indicating whether the end of
the list has been reached.

SCL REMOVE removes the current seed candidate, moves the
current position to the next element, and returns its data.

SCL NEXT moves the current position to the next element and
returns its data.

SCL INSERT inserts new seed candidate data at the current posi-
tion.

Let d be the diagonal of the pair (soff, qoff). Function
UPDATE SEED CANDIDATES first considers all seed candidates with
diagonals less than or equal to d. If the query position of a
seed candidate is less than qoff , then first, it is considered by
CHECK AND SAVE SEED where it is saved if its length is ≥ wsize,
and second, it is removed from the list.

If there is a seed candidate in the list with diagonal equal to d,
and it is extended further to the right than qoff, then the function
returns, since the current k-mer match on diagonal d is already
covered by that seed candidate. However, if r extent is positive,
then the right end of the seed candidate is adjusted to not exceed
soff + r extent−1. This puts it definitely within the corresponding
seed-eligible interval.

The function then tries to extend the k-mer match to the left and
to the right using the sequence data from the index sequence store.

2



Indexed MegaBLAST

The function EXTEND LEFT (EXTEND RIGHT) extends by at most
l extent − 1 (r extent − 1) bases to the left (right) or as much as
possible if l extent = 0 (r extent = 0). It then verifies that the
length of the extended match is at least wsize and inserts it into the
seed candidate list at the current position.

The function, however, will insert matches that are shorter than
wsize into the list if l extent is positive. This is necessary to pre-
vent further matches from being extended to the left beyond the left
boundary of the seed-eligible interval.

Algorithm S2. Inner loop of the seed search procedure.
procedure UPDATE SEED CANDIDATES(index, query, wsize,
lid, soff , qoff, l extent, r extent)

len← INDEX GET KMER LENGTH(index)
scl← INDEX GET SEED CADIDATES(index, lid)
subject← INDEX GET SEQUENCE(index, lid)
diag ← soff − qoff
(soff p, qoff p, len p)← SCL GET CURRENT(scl, qoff)
while DIAG(soff p, qoff p) < diag and (not SCL END(scl))

do
if qoff p < qoff then

CHECK AND SAVE SEED(index, lid, wsize, soff p,
qoff p, len p )

(soff p, qoff p, len p)← SCL REMOVE(scl)
else

(soff p, qoff p, len p)← SCL NEXT(scl)
end if

end while
if DIAG(soff p, qoff p) = diag then

if qoff p ≥ qoff then
if r extent > 0 then

// check for crossing the boundary of seed-eligible
interval

if qoff p ≥ qoff + r extent then
delta← qoff p− qoff − r extent + 1
qoff p← qoff p− delta
soff p← soff p− delta
len p← len p− delta
SCL SET CURRENT(scl, qoff p, soff p, len p)

end if
end if
SCL NEXT(scl)
return

else
CHECK AND SAVE SEED(index, lid, wsize, soff p,

qoff p, len p )
SCL REMOVE(scl)

end if
end if
(soff , qoff, len)←
EXTEND LEFT(subject, query, soff , qoff, len, l extent)
(soff , qoff, len)←
EXTEND RIGHT(subject, query, soff, qoff, len, r extent)
if l extent > 0 or len > wsize then

SCL INSERT(soff, qoff, len)
end if

end procedure
procedure CHECK AND SAVE SEED(index, lid, wsize, soff ,
qoff , len)

if len ≥ wsize then
cid← INDEX LID2SID(index, lid, soff)
res lst← INDEX GET RESULTS(index, cid)
LIST APPEND(res lst, soff, qoff)

end if
end procedure

1.2.3 Optimizations Our implementation of the indexing scheme
described above includes several optimizations aimed at improving
the performance of the search procedure.

One optimization uses the fact that in order to find all matches
of word size W ≥ w it is sufficient to know the positions of every
(W −k+1)-th k-mer in the database. So for large values ofW it is
not necessary to look at every s-th k-mer. Our implementation takes
advantage of this by storing the offset lists in a special order. Let, as
before, p be a position of a k-mer within its logical sequence. Let t
be the largest positive integer, such that ts ≤ W − k + 1. For each
k-mer value we divide the set of its occurrences in the database in
the collection of sets Si, i ∈ 1 . . . t. The sets are defined recursi-
vely as follows. The set St contains all occurrences with positions
(p = 0 mod st) and all special positions. The set Si, 1 ≤ i < t
contains occurences with positions (p = 0 mod si) that are not
already contained in sets Sj , j > i.

Such ordering makes it possible to terminate traversal of an offset
list early. With s = 5 and the default MegaBLAST setting of W =
28 this reduces the number of memory accesses during offset list
traversals by about 2/3.

Another optimization is aimed at improving the cache memory
performance of the procedure. Instead of processing each query
position one at a time, the implementation first accumulates initial
k-mer matches for several query positions in a special buffer. It
then proceeds with extending all the accumulated matches to the
target word size W . This strategy prevents frequent access switches
between the offset and sequence data sections of the index.

3


